21 research outputs found

    Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy

    Get PDF
    © 2018 The Author(s) It is uncertain how vision and proprioception contribute to adaptation of voluntary arm movements. In normal participants, adaptation to imposed forces is possible with or without vision, suggesting that proprioception is sufficient; in participants with proprioceptive loss (PL), adaptation is possible with visual feedback, suggesting that proprioception is unnecessary. In experiment 1 adaptation to, and retention of, perturbing forces were evaluated in three chronically deafferented participants. They made rapid reaching movements to move a cursor toward a visual target, and a planar robot arm applied orthogonal velocity-dependent forces. Trial-by-trial error correction was observed in all participants. Such adaptation has been characterized with a dual-rate model: a fast process that learns quickly, but retains poorly and a slow process that learns slowly and retains well. Experiment 2 showed that the PL participants had large individual differences in learning and retention rates compared to normal controls. Experiment 3 tested participants’ perception of applied forces. With visual feedback, the PL participants could report the perturbation’s direction as well as controls; without visual feedback, thresholds were elevated. Experiment 4 showed, in healthy participants, that force direction could be estimated from head motion, at levels close to the no-vision threshold for the PL participants. Our results show that proprioceptive loss influences perception, motor control and adaptation but that proprioception from the moving limb is not essential for adaptation to, or detection of, force fields. The differences in learning and retention seen between the three deafferented participants suggest that they achieve these tasks in idiosyncratic ways after proprioceptive loss, possibly integrating visual and vestibular information with individual cognitive strategies

    Task errors contribute to implicit aftereffects in sensorimotor adaptation

    Get PDF
    Perturbations of sensory feedback evoke sensory prediction errors (discrepancies between predicted and actual sensory outcomes of movements), and reward prediction errors (discrepancies between predicted rewards and actual rewards). When our task is to hit a target, we expect to succeed in hitting the target, and so we experience a reward prediction error if the perturbation causes us to miss it. These discrepancies between intended task outcomes and actual task outcomes, termed “task errors,” are thought to drive the use of strategic processes to restore success, although their role is incompletely understood. Here, as participants adapted to a 30° rotation of cursor feedback representing hand position, we investigated the role of task errors in sensorimotor adaptation: during target-reaching, we either removed task errors by moving the target mid-movement to align with cursor feedback of hand position, or enforced task error by moving the target away from the cursor feedback of hand position, by 20–30° randomly (clockwise in half the trials, counterclockwise in half the trials). Removing task errors not only reduced the extent of adaptation during exposure to the perturbation, but also reduced the amount of post-adaptation aftereffects that persisted despite explicit knowledge of the perturbation removal. Hence, task errors contribute to implicit adaptation resulting from sensory prediction errors. This suggests that the system which predicts the sensory consequences of actions via exposure to sensory prediction errors is also sensitive to reward prediction errors
    corecore